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Abstract
In this paper we consider flow equations where we allow a normal ordering
which is adjusted to the one-particle energy of the Hamiltonian. We show that
this flow nearly always converges to the stable phase. Starting out from the
symmetric Hamiltonian and symmetry-broken normal ordering nearly always
yields symmetry breaking below the critical temperature.

PACS numbers: 64.60.Ak, 05.30.−d, 71.10.−w

1. Introduction

By applying flow equations to a Hamiltonian [1] one typically starts out from a Hamiltonian
which does not show an explicit symmetry breaking even if the symmetry of the system will
be broken below some temperature. As in the calculations on the Hubbard model [2–5], one
can direct the flow to a form in which molecular-field approximation becomes exact. This
effective Hamiltonian is still not symmetry broken. Only the molecular-field formalism breaks
the symmetry below the critical temperature Tc.

In the fermionic renormalization group flow [6–10], the vertex functions will at least
within weak-coupling approximations diverge at some length scale below Tc, so that the
approximations become unreliable and one has to resort to other methods in this regime. Thus
it is desirable to have a way to introduce symmetry breaking from the beginning. Recently
Salmhofer, Honerkamp, Metzner and Lauscher [12] have added a symmetry-breaking field to
the Hamiltonian and showed that this additional field leads in the symmetry broken phase.

For the Hamiltonian flow it is not necessary to add a symmetry-breaking term to the
Hamiltonian. Instead it is sufficient to choose a normal ordering which is symmetry broken
(compare [11]). One can show that the system will nearly always converge to the stable state,
that is in the case of symmetry breaking (that is below the critical temperature) it runs to a
symmetry broken state, whereas if the symmetric state is stable (above Tc) then it will run to
the symmetric state.
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With this approach the normal-ordered form of the Hamiltonian shows an explicit
dependence on the normal-ordering. We adjust continuously the normal ordering to the
one-particle contribution of the Hamiltonian and we can show that the normal ordering has
the interesting property to run in the direction of the stable state. This implies that starting out
with a symmetry-broken normal ordering, then above the critical temperature it will converge
to the symmetric state whereas below criticality it converges to a symmetry-broken state.

We start out from the flow equation [1]

dH(l)

dl
= [η(l),H(l)], (1)

where η is chosen so that the Hamiltonian approaches a diagonal or block-diagonal form. We
write H in the normal-ordered form

H = : HG :G, (2)

where G defines the normal ordering

Gkj = 〈akaj 〉0. (3)

Here we denote both creation and annihilation operators by a. Then the flow equation reads

dHG

dl
= [η,H ]G +

δHG

δG

∂G

∂l
. (4)

The second term indicates the change of HG due to the change of G. G itself can be described as
the expectation values corresponding to a bilinear Hamiltonian H 0. Then the flow equation (4)
is supplemented by a second equation for H 0. This equation describes the adaption of H 0 to
the one-particle energy of H, and will be given later (46).

In the next section, we consider the effect of normal ordering on operators. Then we
give the general relation between a bilinear Hamiltonian and the expectation values in thermal
equilibrium. Then we return to the flow equation and show that almost always the normal
ordering will approach a stable state.

2. Normal ordering

The idea behind normal ordering is to subtract expectation values

Gkj = 〈akaj 〉 (5)

from products of operator pairs ak, aj . More precisely, one defines normal ordering which is
indicated by two colons

:1: = 1, (6)

:αA(a) + βB(a): = α : A(a) : +β : B(a) :, (7)

ak : A(a): = : akA(a) : +
∑

j

Gkj :
∂

∂aj

A(a) :, (8)

where α, β are c-numbers. These equations hold for bosons and fermions. In performing the
derivatives for fermions one has to consider that the operators a anticommute. Iteration of (8)
yields

ak1ak2 . . . akm
= :

(
ak1 +

∑
l1

Gk1j1

∂

∂aj1

) 
ak2 +

∑
j2

Gk2j2

∂

∂aj2


 . . . akm

: (9)
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which can also be written as

ak1ak2 . . . akm
= : exp


∑

kj

Gkj

∂2

∂a
right
j ∂aleft

k


 ak1ak2 . . . akm

: . (10)

This is Wick’s first theorem [13]. The superscripts left and right indicate that we always pick
a pair of factors a and perform the derivative ∂

∂ak
on the left factor and the derivative ∂

∂aj
on the

right factor, so that the factor Gkj depends on the sequence of the operators. The exponential
appears in the equation for the following reason. If we perform the operation G ∂2

∂a∂a
on m pairs

of factors a, then there are due to the permutation symmetry m! contributions. Therefore, in
order to obtain the contribution with factor one, we have to divide the mth power of G ∂2

∂a∂a

by m!, which yields the exponential. Note that for fermions the operators a as well as the
derivatives ∂

∂a
anticommute.

Since in the following we will change the normal ordering, it is appropriate to indicate to
which expectation values G it is performed. Then we obtain quite general for operators A

:AG :G = A, AG = exp


∑

kj

Gkj

∂2

∂a
right
j ∂aleft

k


 A(a). (11)

If we dissect Gkj = Qkj + Ckj , where Ckj = Cjk for bosons and Ckj = −Cjk for fermions,
then we have

:AG :G = : AQ :Q, AG = exp


1

2

∑
kj

Ckj

∂2

∂aj ∂ak


 AQ (12)

and we need no longer to distinguish the sequence of the factors. Suppose, we have

H = v(0) +
1

2!

∑
kj

v
(1)
kj akaj +

1

4!

∑
kjmn

v
(2)
kjmnakajaman (13)

and v
(1)
kj and v

(2)
kjmn are completely symmetric for bosons and antisymmetric for fermions, resp.,

then the normal-ordered form reads

HG = v
(0)
G +

1

2!
v

(1)
G,kj akaj +

1

4!
v

(2)
G,kjmnakajaman, (14)

v
(0)
G = v(0) +

1

2

∑
kj

v
(1)
kj Gkj +

1

8

∑
kjmn

v
(2)
kjmnGkjGmn, (15)

v
(1)
G,kj = v

(1)
kj +

1

2

∑
mn

v
(2)
kjmnGmn, (16)

v
(2)
G,kjmn = v

(2)
kjmn. (17)

Expressing A and B by AG and BG by means of equation (10) and then transforming back to
the normal ordering, we obtain for the product of two operators:

: AG(a) :G: BG(a) :G = : exp


∑

kj

Gkj

∂2

∂bj∂ak


 AG(a)BG(b) : |G,b=a. (18)
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3. Expectation values for H0

In the following we will consider only fermions. A conventional way to introduce normal
ordering is to use a Hamiltonian

H 0 = 1
2 ε̃kj ak∗aj , (19)

where we use the notation

a
†
k = ak∗ , ak = a

†
k∗ . (20)

Considering a as a column vector and a† as a row vector, we may write

ε̃kj ak∗aj = (a† aT )ε̃

(
a

a∗

)
= (a† aT )

(
A B

B† −AT

)(
a

a∗

)
A† = A, BT = −B.

(21)

Thus ε̃ has the properties

ε̃† = ε̃, τ ε̃τ = −ε̃T , τ =
(

0 1
1 0

)
(22)

ε̃ can be diagonalized with diagonal matrix elements εk and −εk . (This diagonalization
is performed by a canonical transformation which is isomorphic to a real orthogonal
transformation. This can be easily seen if one introduces the Hermitean linear combinations

qk = a
†
k+ak√

2
and pk = i(a†

k−ak)√
2

.)
In thermal equilibrium one obtains for diagonal ε̃, i.e. ε̃kj = δkj εk〈

a
†
kak

〉 = 1

eβεk + 1
,

〈
aka

†
k

〉 = 1

e−βεk + 1
(23)

so that even when ε̃ is not diagonal

G̃ = 1

eβε̃ + 1
= 1

2
− 1

2
tanh

(
βε̃

2

)
(24)

holds with G̃kj = Gk∗j . A variation of ε̃ yields

δG̃ = − 1

eβε̃ + 1
δ eβε̃ 1

eβε̃ + 1
= − 1

eβε̃ + 1

∫ β

0
dτ eτ ε̃δε̃ e(β−τ)ε̃ 1

eβε̃ + 1
. (25)

Thus we may write

δG̃kj = −�kj,pqδε̃pq (26)

with

�kj,pq =
∫ β

0
dτ

(
1

eβε̃ + 1
eτ ε̃

)
kp

(
e(β−τ)ε̃ 1

eβε̃ + 1

)
qj

. (27)

4. Free energy and stability

It is well known that for a given Hamiltonian H and temperature T, the free energy assumes its
minimum for the corresponding statistical operator ρ = e−βH/Z. Thus one often determines
approximately the free energy for the statistical operator ρ0 = e−βH 0

/Z0 with H 0 bilinear in
the operators a and determines ε̃ so that the corresponding free energy F 0 becomes minimal.
One obtains

F 0 = E − T S, E = v
(0)
G , S = −kB

2
tr(G̃ ln G̃ + (1 − G̃) ln(1 − G̃)). (28)
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We use that 〈A(a)〉0 = AG|a=0. We will vary this expression. By means of

AG+δG = AG +
1

2

∑
kj

δGkj

∂2

∂aj∂ak

AG (29)

+
1

8

∑
kjmn

δGkj δGmn

∂4

∂aj∂ak∂an∂am

AG + O(δG3), (30)

we obtain

E = v
(0)
G + 1

2v
(1)
G,k∗j δG̃kj + 1

8v
(2)
G,k∗jm∗nδG̃kj δG̃mn + · · · . (31)

A variation of S yields in first order in δG̃

δS = −kB

2
ln

(
G̃

1 − G̃

)
jk

δG̃kj . (32)

Therefore, we obtain in first order in δG̃

δF 0 = 1

2

(
v

(1)
G,k∗j + kBT ln

(
G̃

1 − G̃

)
jk

)
δG̃kj

= 1

2

(
v

(1)
G,k∗j − ε̃kj

)
δG̃kj . (33)

In order that F 0 is an extremum one has to choose ε̃kj = v
(1)
G,k∗j , that is the one-particle

contribution of our Hamiltonian HG has to agree with H 0. In second order in δG̃, we obtain

δF 0 = 1
8v

(2)
G,k∗jm∗nδG̃kj δG̃mn − 1

4δε̃kj δG̃kj , (34)

where δε̃ is given in terms of δG̃ from (26)

δε̃kj = −(�−1)kj,mnδG̃mn. (35)

which yields

δF 0 = 1
4

(
1
2v

(2)
G,k∗jm∗n + (�−1)kj,mn

)
δG̃kj δG̃mn. (36)

Only if this expression is positive definite then it corresponds to a stable solution. We note
that � is positive definite and therefore �−1 exists and is positive definite, too. This can be
seen if we switch to the basis in which ε̃ is diagonal, ε̃kj = δkj εk . Then

�kj,pq = δkpδjq�
d
kj , (37)

�d
kj = eβεk − eβεj

(eβεk + 1)(εk − εj )(eβεj + 1)
> 0. (38)

Thus � is diagonal with positive matrix elements along the diagonal.
These expressions are closely connected to the response function in random phase

approximation. Suppose one adds a perturbation δv(1,ext) to the Hamiltonian H which produces
a change δG̃ext in the expectation values 〈akaj 〉 then we have from equations (33, 36)

1
2

(
δv

(1,ext)
G,k∗j +

(
1
2v

(2)
G,k∗jm∗n + (�−1)kj,mn

)
δG̃mn

)
δG̃ext

kj = 0. (39)

If we now relate δG̃ext to a perturbation δv(1,eff) which would have the same effect without the
interaction v(2) according to equation (26)

δG̃eff
mn = −�mn,pqδv

(1,eff)
pq (40)



1236 E Körding and F Wegner

then we obtain

δv
(1,ext)
G,k∗j = (

1
2v

(2)
G,k∗jm∗n�mn,pq + δkpδjq

)
δv

(1,eff)
p∗q . (41)

This factor 1
2v(2)� + 1 enters for example in the Lindhard expression for the static dielectric

constant. One has only to introduce v(2) ∝ e2/q2 and

�d
kj = f (εj ) − f (εk)

εk − εj

(42)

with the Fermi function f (ε). The dielectric constant has to be positive for a stable system.

5. Flow equations

Now we have to introduce our flow equations. We have two contributions to the change of
HG, one from the generator of the flow,

[η,H ]G = g(0) + 1
2g

(1)
kj akaj + · · · (43)

and one from the change of the normal ordering which yields

1

2

∂Gkj

∂l

∂2

∂aj ∂ak

H = −1

2
�kj,mn

∂ε̃mn

∂l

(
v

(1)
k∗j +

1

2
v

(2)
k∗jp∗qap∗aq + · · ·

)
. (44)

Thus we obtain the change of v(1)

∂v
(1)
k∗j

∂l
= g

(1)
k∗j − 1

2
�pq,mnv

(2)
p∗qk∗j

∂ε̃mn

∂l
(45)

for the one-particle energy. On the other hand, we wish to adapt ε̃ so that it approaches v(1).
Therefore, we introduce a flow equation for ε̃

∂ε̃kj

∂l
= γ

(
v

(1)
k∗j − ε̃kj

)
(46)

with some positive constant γ . Evidently for fixed v(1) the energy ε̃ approaches exponentially
v(1). From both equations, we obtain

∂
(
v

(1)
k∗j − ε̃kj

)
∂l

= g
(1)
k∗j − γ

(
δkmδjn +

1

2
�pq,mnv

(2)
p∗qk∗j

) (
v

(1)
m∗n − ε̃mn

)
. (47)

Thus as g(1) from the generator of the flow decreases also (v(1) − ε̃) will decrease provided the
kernel 1 + 1

2�v(2) is positive definite. Otherwise the difference (v(1) − ε̃) will nearly always
increase exponentially. The condition that this kernel is positive definite is equivalent to the
stability obtained from F 0 in equation (36), since the kernel for F 0 differs only by the factor
�, which itself is positive definite.
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