Flow equations and normal ordering

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2006 J. Phys. A: Math. Gen. 391231
(http://iopscience.iop.org/0305-4470/39/6/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.108
The article was downloaded on 03/06/2010 at 04:59

Please note that terms and conditions apply.

Flow equations and normal ordering

Elmar Körding ${ }^{1}$ and Franz Wegner
Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 19, D-69120 Heidelberg, Germany

Received 29 November 2005
Published 25 January 2006
Online at stacks.iop.org/JPhysA/39/1231

Abstract

In this paper we consider flow equations where we allow a normal ordering which is adjusted to the one-particle energy of the Hamiltonian. We show that this flow nearly always converges to the stable phase. Starting out from the symmetric Hamiltonian and symmetry-broken normal ordering nearly always yields symmetry breaking below the critical temperature.

PACS numbers: 64.60.Ak, 05.30.-d, 71.10.-w

1. Introduction

By applying flow equations to a Hamiltonian [1] one typically starts out from a Hamiltonian which does not show an explicit symmetry breaking even if the symmetry of the system will be broken below some temperature. As in the calculations on the Hubbard model [2-5], one can direct the flow to a form in which molecular-field approximation becomes exact. This effective Hamiltonian is still not symmetry broken. Only the molecular-field formalism breaks the symmetry below the critical temperature T_{c}.

In the fermionic renormalization group flow [6-10], the vertex functions will at least within weak-coupling approximations diverge at some length scale below T_{c}, so that the approximations become unreliable and one has to resort to other methods in this regime. Thus it is desirable to have a way to introduce symmetry breaking from the beginning. Recently Salmhofer, Honerkamp, Metzner and Lauscher [12] have added a symmetry-breaking field to the Hamiltonian and showed that this additional field leads in the symmetry broken phase.

For the Hamiltonian flow it is not necessary to add a symmetry-breaking term to the Hamiltonian. Instead it is sufficient to choose a normal ordering which is symmetry broken (compare [11]). One can show that the system will nearly always converge to the stable state, that is in the case of symmetry breaking (that is below the critical temperature) it runs to a symmetry broken state, whereas if the symmetric state is stable (above T_{c}) then it will run to the symmetric state.
${ }^{1}$ Present address: School of Physics and Astronomy, University of Southampton, SO17 1BJ, UK.

With this approach the normal-ordered form of the Hamiltonian shows an explicit dependence on the normal-ordering. We adjust continuously the normal ordering to the one-particle contribution of the Hamiltonian and we can show that the normal ordering has the interesting property to run in the direction of the stable state. This implies that starting out with a symmetry-broken normal ordering, then above the critical temperature it will converge to the symmetric state whereas below criticality it converges to a symmetry-broken state.

We start out from the flow equation [1]

$$
\begin{equation*}
\frac{\mathrm{d} H(l)}{\mathrm{d} l}=[\eta(l), H(l)] \tag{1}
\end{equation*}
$$

where η is chosen so that the Hamiltonian approaches a diagonal or block-diagonal form. We write H in the normal-ordered form

$$
\begin{equation*}
H=: H_{G}:_{G}, \tag{2}
\end{equation*}
$$

where G defines the normal ordering

$$
\begin{equation*}
G_{k j}=\left\langle a_{k} a_{j}\right\rangle_{0} . \tag{3}
\end{equation*}
$$

Here we denote both creation and annihilation operators by a. Then the flow equation reads

$$
\begin{equation*}
\frac{\mathrm{d} H_{G}}{\mathrm{~d} l}=[\eta, H]_{G}+\frac{\delta H_{G}}{\delta G} \frac{\partial G}{\partial l} . \tag{4}
\end{equation*}
$$

The second term indicates the change of H_{G} due to the change of $G . G$ itself can be described as the expectation values corresponding to a bilinear Hamiltonian H^{0}. Then the flow equation (4) is supplemented by a second equation for H^{0}. This equation describes the adaption of H^{0} to the one-particle energy of H, and will be given later (46).

In the next section, we consider the effect of normal ordering on operators. Then we give the general relation between a bilinear Hamiltonian and the expectation values in thermal equilibrium. Then we return to the flow equation and show that almost always the normal ordering will approach a stable state.

2. Normal ordering

The idea behind normal ordering is to subtract expectation values

$$
\begin{equation*}
G_{k j}=\left\langle a_{k} a_{j}\right\rangle \tag{5}
\end{equation*}
$$

from products of operator pairs a_{k}, a_{j}. More precisely, one defines normal ordering which is indicated by two colons

$$
\begin{align*}
& : 1:=1 \tag{6}\\
& : \alpha A(a)+\beta B(a):=\alpha: A(a):+\beta: B(a): \tag{7}\\
& a_{k}: A(a):=: a_{k} A(a):+\sum_{j} G_{k j}: \frac{\partial}{\partial a_{j}} A(a):, \tag{8}
\end{align*}
$$

where α, β are c -numbers. These equations hold for bosons and fermions. In performing the derivatives for fermions one has to consider that the operators a anticommute. Iteration of (8) yields

$$
\begin{equation*}
a_{k_{1}} a_{k_{2}} \ldots a_{k_{m}}=:\left(a_{k_{1}}+\sum_{l_{1}} G_{k_{1} j_{1}} \frac{\partial}{\partial a_{j_{1}}}\right)\left(a_{k_{2}}+\sum_{j_{2}} G_{k_{2} j_{2}} \frac{\partial}{\partial a_{j_{2}}}\right) \ldots a_{k_{m}}: \tag{9}
\end{equation*}
$$

which can also be written as

$$
\begin{equation*}
a_{k_{1}} a_{k_{2}} \ldots a_{k_{m}}=: \exp \left(\sum_{k j} G_{k j} \frac{\partial^{2}}{\partial a_{j}^{\text {right }} \partial a_{k}^{\text {left }}}\right) a_{k_{1}} a_{k_{2}} \ldots a_{k_{m}}: \tag{10}
\end{equation*}
$$

This is Wick's first theorem [13]. The superscripts left and right indicate that we always pick a pair of factors a and perform the derivative $\frac{\partial}{\partial a_{k}}$ on the left factor and the derivative $\frac{\partial}{\partial a_{j}}$ on the right factor, so that the factor $G_{k j}$ depends on the sequence of the operators. The exponential appears in the equation for the following reason. If we perform the operation $G \frac{\partial^{2}}{\partial a \partial a}$ on m pairs of factors a, then there are due to the permutation symmetry $m!$ contributions. Therefore, in order to obtain the contribution with factor one, we have to divide the m th power of $G \frac{\partial^{2}}{\partial a \partial a}$ by $m!$, which yields the exponential. Note that for fermions the operators a as well as the derivatives $\frac{\partial}{\partial a}$ anticommute.

Since in the following we will change the normal ordering, it is appropriate to indicate to which expectation values G it is performed. Then we obtain quite general for operators A

$$
\begin{equation*}
: A_{G}:_{G}=A, \quad A_{G}=\exp \left(\sum_{k j} G_{k j} \frac{\partial^{2}}{\partial a_{j}^{\text {right }} \partial a_{k}^{\text {left }}}\right) A(a) . \tag{11}
\end{equation*}
$$

If we dissect $G_{k j}=Q_{k j}+C_{k j}$, where $C_{k j}=C_{j k}$ for bosons and $C_{k j}=-C_{j k}$ for fermions, then we have

$$
\begin{equation*}
: A_{G}:_{G}=: A_{Q}:_{Q}, \quad A_{G}=\exp \left(\frac{1}{2} \sum_{k j} C_{k j} \frac{\partial^{2}}{\partial a_{j} \partial a_{k}}\right) A_{Q} \tag{12}
\end{equation*}
$$

and we need no longer to distinguish the sequence of the factors. Suppose, we have

$$
\begin{equation*}
H=v^{(0)}+\frac{1}{2!} \sum_{k j} v_{k j}^{(1)} a_{k} a_{j}+\frac{1}{4!} \sum_{k j m n} v_{k j m n}^{(2)} a_{k} a_{j} a_{m} a_{n} \tag{13}
\end{equation*}
$$

and $v_{k j}^{(1)}$ and $v_{k j m n}^{(2)}$ are completely symmetric for bosons and antisymmetric for fermions, resp., then the normal-ordered form reads

$$
\begin{align*}
& H_{G}=v_{G}^{(0)}+\frac{1}{2!} v_{G, k j}^{(1)} a_{k} a_{j}+\frac{1}{4!} v_{G, k j m n}^{(2)} a_{k} a_{j} a_{m} a_{n}, \tag{14}\\
& v_{G}^{(0)}=v^{(0)}+\frac{1}{2} \sum_{k j} v_{k j}^{(1)} G_{k j}+\frac{1}{8} \sum_{k j m n} v_{k j m n}^{(2)} G_{k j} G_{m n}, \tag{15}\\
& v_{G, k j}^{(1)}=v_{k j}^{(1)}+\frac{1}{2} \sum_{m n} v_{k j m n}^{(2)} G_{m n}, \tag{16}\\
& v_{G, k j m n}^{(2)}=v_{k j m n}^{(2)} . \tag{17}
\end{align*}
$$

Expressing A and B by A_{G} and B_{G} by means of equation (10) and then transforming back to the normal ordering, we obtain for the product of two operators:

$$
\begin{equation*}
: A_{G}(a):_{G}: B_{G}(a):_{G}=: \exp \left(\sum_{k j} G_{k j} \frac{\partial^{2}}{\partial b_{j} \partial a_{k}}\right) A_{G}(a) B_{G}(b):\left.\right|_{G, b=a} . \tag{18}
\end{equation*}
$$

3. Expectation values for $\boldsymbol{H}^{\mathbf{0}}$

In the following we will consider only fermions. A conventional way to introduce normal ordering is to use a Hamiltonian

$$
\begin{equation*}
H^{0}=\frac{1}{2} \tilde{\epsilon}_{k j} a_{k^{*}} a_{j}, \tag{19}
\end{equation*}
$$

where we use the notation

$$
\begin{equation*}
a_{k}^{\dagger}=a_{k^{*}}, \quad a_{k}=a_{k^{*}}^{\dagger} \tag{20}
\end{equation*}
$$

Considering a as a column vector and a^{\dagger} as a row vector, we may write

$$
\begin{align*}
& \tilde{\epsilon}_{k j} a_{k^{*}} a_{j}=\left(\begin{array}{ll}
a^{\dagger} & a^{T}
\end{array}\right) \tilde{\epsilon}\binom{a}{a^{*}}=\left(\begin{array}{ll}
a^{\dagger} & a^{T}
\end{array}\right)\left(\begin{array}{cc}
A & B \\
B^{\dagger} & -A^{T}
\end{array}\right)\binom{a}{a^{*}} \tag{21}\\
& A^{\dagger}=A, \quad B^{T}=-B .
\end{align*}
$$

Thus $\tilde{\epsilon}$ has the properties

$$
\tilde{\epsilon}^{\dagger}=\tilde{\epsilon}, \quad \tau \tilde{\epsilon} \tau=-\tilde{\epsilon}^{T}, \quad \tau=\left(\begin{array}{ll}
0 & 1 \tag{22}\\
1 & 0
\end{array}\right)
$$

$\tilde{\epsilon}$ can be diagonalized with diagonal matrix elements ϵ_{k} and $-\epsilon_{k}$. (This diagonalization is performed by a canonical transformation which is isomorphic to a real orthogonal transformation. This can be easily seen if one introduces the Hermitean linear combinations $q_{k}=\frac{a_{k}^{\dagger}+a_{k}}{\sqrt{2}}$ and $p_{k}=\frac{\mathrm{i}\left(a_{k}^{\dagger}-a_{k}\right)}{\sqrt{2}}$.)

In thermal equilibrium one obtains for diagonal $\tilde{\epsilon}$, i.e. $\tilde{\epsilon}_{k j}=\delta_{k j} \epsilon_{k}$

$$
\begin{equation*}
\left\langle a_{k}^{\dagger} a_{k}\right\rangle=\frac{1}{\mathrm{e}^{\beta \epsilon_{k}}+1}, \quad\left\langle a_{k} a_{k}^{\dagger}\right\rangle=\frac{1}{\mathrm{e}^{-\beta \epsilon_{k}}+1} \tag{23}
\end{equation*}
$$

so that even when $\tilde{\epsilon}$ is not diagonal

$$
\begin{equation*}
\tilde{G}=\frac{1}{\mathrm{e}^{\beta \tilde{\epsilon}}+1}=\frac{1}{2}-\frac{1}{2} \tanh \left(\frac{\beta \tilde{\epsilon}}{2}\right) \tag{24}
\end{equation*}
$$

holds with $\tilde{G}_{k j}=G_{k^{*} j}$. A variation of $\tilde{\epsilon}$ yields

$$
\begin{equation*}
\delta \tilde{G}=-\frac{1}{\mathrm{e}^{\beta \tilde{\epsilon}}+1} \delta \mathrm{e}^{\beta \tilde{\epsilon}} \frac{1}{\mathrm{e}^{\beta \tilde{\epsilon}}+1}=-\frac{1}{\mathrm{e}^{\beta \tilde{\epsilon}}+1} \int_{0}^{\beta} \mathrm{d} \tau \mathrm{e}^{\tau \tilde{\epsilon}} \delta \tilde{\epsilon} \mathrm{e}^{(\beta-\tau) \tilde{\epsilon}} \frac{1}{\mathrm{e}^{\beta \tilde{\epsilon}}+1} . \tag{25}
\end{equation*}
$$

Thus we may write

$$
\begin{equation*}
\delta \tilde{G}_{k j}=-\Gamma_{k j, p q} \delta \tilde{\epsilon}_{p q} \tag{26}
\end{equation*}
$$

with

$$
\begin{equation*}
\Gamma_{k j, p q}=\int_{0}^{\beta} \mathrm{d} \tau\left(\frac{1}{\mathrm{e}^{\beta \tilde{\epsilon}}+1} \mathrm{e}^{\tau \tilde{\epsilon}}\right)_{k p}\left(\mathrm{e}^{(\beta-\tau) \tilde{\epsilon}} \frac{1}{\mathrm{e}^{\beta \tilde{\epsilon}}+1}\right)_{q j} \tag{27}
\end{equation*}
$$

4. Free energy and stability

It is well known that for a given Hamiltonian H and temperature T, the free energy assumes its minimum for the corresponding statistical operator $\rho=\mathrm{e}^{-\beta H} / Z$. Thus one often determines approximately the free energy for the statistical operator $\rho^{0}=\mathrm{e}^{-\beta H^{0}} / Z^{0}$ with H^{0} bilinear in the operators a and determines $\tilde{\epsilon}$ so that the corresponding free energy F^{0} becomes minimal. One obtains
$F^{0}=E-T S, \quad E=v_{G}^{(0)}, \quad S=-\frac{k_{\mathrm{B}}}{2} \operatorname{tr}(\tilde{G} \ln \tilde{G}+(1-\tilde{G}) \ln (1-\tilde{G}))$.

We use that $\langle A(a)\rangle^{0}=\left.A_{G}\right|_{a=0}$. We will vary this expression. By means of

$$
\begin{align*}
A_{G+\delta G}= & A_{G}+\frac{1}{2} \sum_{k j} \delta G_{k j} \frac{\partial^{2}}{\partial a_{j} \partial a_{k}} A_{G} \tag{29}\\
& +\frac{1}{8} \sum_{k j m n} \delta G_{k j} \delta G_{m n} \frac{\partial^{4}}{\partial a_{j} \partial a_{k} \partial a_{n} \partial a_{m}} A_{G}+O\left(\delta G^{3}\right) \tag{30}
\end{align*}
$$

we obtain

$$
\begin{equation*}
E=v_{G}^{(0)}+\frac{1}{2} v_{G, k^{*} j}^{(1)} \delta \tilde{G}_{k j}+\frac{1}{8} v_{G, k^{*} j m^{*} n}^{(2)} \delta \tilde{G}_{k j} \delta \tilde{G}_{m n}+\cdots \tag{31}
\end{equation*}
$$

A variation of S yields in first order in $\delta \tilde{G}$

$$
\begin{equation*}
\delta S=-\frac{k_{\mathrm{B}}}{2} \ln \left(\frac{\tilde{G}}{1-\tilde{G}}\right)_{j k} \delta \tilde{G}_{k j} . \tag{32}
\end{equation*}
$$

Therefore, we obtain in first order in $\delta \tilde{G}$

$$
\begin{align*}
\delta F^{0} & =\frac{1}{2}\left(v_{G, k^{*} j}^{(1)}+k_{\mathrm{B}} T \ln \left(\frac{\tilde{G}}{1-\tilde{G}}\right)_{j k}\right) \delta \tilde{G}_{k j} \\
& =\frac{1}{2}\left(v_{G, k^{*} j}^{(1)}-\tilde{\epsilon}_{k j}\right) \delta \tilde{G}_{k j} . \tag{33}
\end{align*}
$$

In order that F^{0} is an extremum one has to choose $\tilde{\epsilon}_{k j}=v_{G, k^{*} j}^{(1)}$, that is the one-particle contribution of our Hamiltonian H_{G} has to agree with H^{0}. In second order in $\delta \tilde{G}$, we obtain

$$
\begin{equation*}
\delta F^{0}=\frac{1}{8} v_{G, k^{*} j m^{*} n}^{(2)} \delta \tilde{G}_{k j} \delta \tilde{G}_{m n}-\frac{1}{4} \delta \tilde{\epsilon}_{k j} \delta \tilde{G}_{k j} \tag{34}
\end{equation*}
$$

where $\delta \tilde{\epsilon}$ is given in terms of $\delta \tilde{G}$ from (26)

$$
\begin{equation*}
\delta \tilde{\epsilon}_{k j}=-\left(\Gamma^{-1}\right)_{k j, m n} \delta \tilde{G}_{m n} \tag{35}
\end{equation*}
$$

which yields

$$
\begin{equation*}
\delta F^{0}=\frac{1}{4}\left(\frac{1}{2} v_{G, k^{*} j m^{*} n}^{(2)}+\left(\Gamma^{-1}\right)_{k j, m n}\right) \delta \tilde{G}_{k j} \delta \tilde{G}_{m n} \tag{36}
\end{equation*}
$$

Only if this expression is positive definite then it corresponds to a stable solution. We note that Γ is positive definite and therefore Γ^{-1} exists and is positive definite, too. This can be seen if we switch to the basis in which $\tilde{\epsilon}$ is diagonal, $\tilde{\epsilon}_{k j}=\delta_{k j} \epsilon_{k}$. Then

$$
\begin{align*}
& \Gamma_{k j, p q}=\delta_{k p} \delta_{j q} \Gamma_{k j}^{\mathrm{d}} \tag{37}\\
& \Gamma_{k j}^{\mathrm{d}}=\frac{\mathrm{e}^{\beta \epsilon_{k}}-\mathrm{e}^{\beta \epsilon_{j}}}{\left(\mathrm{e}^{\beta \epsilon_{k}}+1\right)\left(\epsilon_{k}-\epsilon_{j}\right)\left(\mathrm{e}^{\beta \epsilon_{j}}+1\right)}>0 \tag{38}
\end{align*}
$$

Thus Γ is diagonal with positive matrix elements along the diagonal.
These expressions are closely connected to the response function in random phase approximation. Suppose one adds a perturbation $\delta v^{(1, \text { ext })}$ to the Hamiltonian H which produces a change $\delta \tilde{G}^{\text {ext }}$ in the expectation values $\left\langle a_{k} a_{j}\right\rangle$ then we have from equations $(33,36)$

$$
\begin{equation*}
\frac{1}{2}\left(\delta v_{G, k^{*} j}^{(1, \mathrm{ext})}+\left(\frac{1}{2} v_{G, k^{*} j m^{*} n}^{(2)}+\left(\Gamma^{-1}\right)_{k j, m n}\right) \delta \tilde{\boldsymbol{G}}_{m n}\right) \delta \tilde{G}_{k j}^{\mathrm{ext}}=0 . \tag{39}
\end{equation*}
$$

If we now relate $\delta \tilde{G}^{\text {ext }}$ to a perturbation $\delta v^{(1, \text { eff })}$ which would have the same effect without the interaction $v^{(2)}$ according to equation (26)

$$
\begin{equation*}
\delta \tilde{G}_{m n}^{\mathrm{eff}}=-\Gamma_{m n, p q} \delta v_{p q}^{(1, \text { eff })} \tag{40}
\end{equation*}
$$

then we obtain

$$
\begin{equation*}
\delta v_{G, k^{*} j}^{(1, \mathrm{ext})}=\left(\frac{1}{2} v_{G, k^{*} j m^{*} n}^{(2)} \Gamma_{m n, p q}+\delta_{k p} \delta_{j q}\right) \delta v_{p^{*} q}^{(1, \text { eff })} . \tag{41}
\end{equation*}
$$

This factor $\frac{1}{2} v^{(2)} \Gamma+1$ enters for example in the Lindhard expression for the static dielectric constant. One has only to introduce $v^{(2)} \propto e^{2} / q^{2}$ and

$$
\begin{equation*}
\Gamma_{k j}^{\mathrm{d}}=\frac{f\left(\epsilon_{j}\right)-f\left(\epsilon_{k}\right)}{\epsilon_{k}-\epsilon_{j}} \tag{42}
\end{equation*}
$$

with the Fermi function $f(\epsilon)$. The dielectric constant has to be positive for a stable system.

5. Flow equations

Now we have to introduce our flow equations. We have two contributions to the change of H_{G}, one from the generator of the flow,

$$
\begin{equation*}
[\eta, H]_{G}=g^{(0)}+\frac{1}{2} g_{k j}^{(1)} a_{k} a_{j}+\cdots \tag{43}
\end{equation*}
$$

and one from the change of the normal ordering which yields

$$
\begin{equation*}
\frac{1}{2} \frac{\partial G_{k j}}{\partial l} \frac{\partial^{2}}{\partial a_{j} \partial a_{k}} H=-\frac{1}{2} \Gamma_{k j, m n} \frac{\partial \tilde{\epsilon}_{m n}}{\partial l}\left(v_{k^{*} j}^{(1)}+\frac{1}{2} v_{k^{*} j p^{*} q}^{(2)} a_{p^{*}} a_{q}+\cdots\right) . \tag{44}
\end{equation*}
$$

Thus we obtain the change of $v^{(1)}$

$$
\begin{equation*}
\frac{\partial v_{k^{*} j}^{(1)}}{\partial l}=g_{k^{*} j}^{(1)}-\frac{1}{2} \Gamma_{p q, m n} v_{p^{*} q k^{*} j}^{(2)} \frac{\partial \tilde{\epsilon}_{m n}}{\partial l} \tag{45}
\end{equation*}
$$

for the one-particle energy. On the other hand, we wish to adapt $\tilde{\epsilon}$ so that it approaches $v^{(1)}$. Therefore, we introduce a flow equation for $\tilde{\epsilon}$

$$
\begin{equation*}
\frac{\partial \tilde{\epsilon}_{k j}}{\partial l}=\gamma\left(v_{k^{*} j}^{(1)}-\tilde{\epsilon}_{k j}\right) \tag{46}
\end{equation*}
$$

with some positive constant γ. Evidently for fixed $v^{(1)}$ the energy $\tilde{\epsilon}$ approaches exponentially $v^{(1)}$. From both equations, we obtain

$$
\begin{equation*}
\frac{\partial\left(v_{k^{*} j}^{(1)}-\tilde{\epsilon}_{k j}\right)}{\partial l}=g_{k^{*} j}^{(1)}-\gamma\left(\delta_{k m} \delta_{j n}+\frac{1}{2} \Gamma_{p q, m n} v_{p^{*} q k^{*} j}^{(2)}\right)\left(v_{m^{*} n}^{(1)}-\tilde{\epsilon}_{m n}\right) . \tag{47}
\end{equation*}
$$

Thus as $g^{(1)}$ from the generator of the flow decreases also $\left(v^{(1)}-\tilde{\epsilon}\right)$ will decrease provided the kernel $1+\frac{1}{2} \Gamma v^{(2)}$ is positive definite. Otherwise the difference $\left(v^{(1)}-\tilde{\epsilon}\right)$ will nearly always increase exponentially. The condition that this kernel is positive definite is equivalent to the stability obtained from F^{0} in equation (36), since the kernel for F^{0} differs only by the factor Γ, which itself is positive definite.

References

[1] Wegner F 1994 Ann. Phys. Lpz. 377
[2] Grote I, Körding E and Wegner F 2002 J. Low Temp. Phys. 1261385
[3] Hankevych V, Grote I and Wegner F 2002 Phys. Rev. B 66094516
[4] Hankevych V and Wegner F 2003 Acta Phys. Pol. B 34497 Hankevych V and Wegner F 2003 Acta Phys. Pol. B 341591 (erratum)
[5] Hankevych V and Wegner F 2003 Eur. Phys. J. B 31333
[6] Shankar R 1991 Physica A 177530
[7] Shankar R 1994 Rev. Mod. Phys. 66 129-92
[8] Zanchi D and Schulz H J 2000 Phys. Rev. B 6113609
[9] Halboth C J and Metzner W 2000 Phys. Rev. B 617364
[10] Salmhofer M and Honerkamp C 2001 Prog. Theor. Phys. 1051
[11] Körding E 2001 Diploma Thesis Heidelberg
[12] Salmhofer M, Honerkamp C, Metzner W and Lauscher O 2004 Prog. Theor. Phys. 112 943-70
[13] Wick G C 1950 Phys. Rev. 80268

